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Abstract. An energy function is proposed whose long-time dynamic behaviour is believed 
to resemble that of a realistic large competitive neural network. A simple model which 
gives rise to this energy function is described. The model is solved exactly for a finite 
number of patterns in the thermodynamic limit using mean-field theory. Simulations of 
this model are presented. The behaviour of large competitive networks is discussed. 

1. Introduction 

In this paper a Hamiltonian is introduced whose behaviour resembles that of competi- 
tive networks. A model is described which gives rise to this Hamiltonian. This model 
is a highly idealised version of real neural networks and consequently possesses many 
unphysiological features; however, it is believed that it captures many of the important 
long-term properties of large competitive networks. In this respect it plays a similar 
role for competitive networks as the Hopfield model does for auto-associative memories. 
In fact this model shares many other features in common with the Hopfield model 
although it describes a very different neural system. 

Competitive networks were first introduced to explain the firing patterns found in 
the visual cortex; see, for example, [ 1-61. Figure 1 shows a schematic representation 
of this type of network. In its simplest form a competitive network consists of a set 
of N ,  afferent axons (here shown coming in from the left) which synapse onto a set 
of Nd (vertical) dendrites. The synaptic coupling strength between axon i and dendrite 
p we denote by c f .  A set of N p  input patterns are presented to the network. The 
presynaptic potential produced by pattern p on axon i we denote by 6 7 .  The presynap- 
tic potentials create postsynaptic potentials which are accumulated by the dendrites 
causing the cell bodies to fire. However, the efferent axons (those leaving the cell 
bodies) synapse with interneurons which feedback onto all the neurons in the vicinity, 
altering the final firing rate (denoted by S p + ) ,  

In our competitive network model we make the simplifying assumption that the 
synaptic weights and  the input patterns are Ising variables (k l ) .  The dynamics of the 
weights is assumed to give rise to a Hamiltonian X[c] consisting of three pieces 
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Figure 1. Schematic representation of a competitive network. Input stimuli 67 are presented 
along the horizontal axons; these synapse with the vertical dendrites which sum the 
postsynaptic potentials causing the cell body to fire. The firing of the cells is detected by 
the horizontal inhibitory inter-neuron which moderates the cell firing rates. 

The effect of the three parts of this equation can be roughly interpreted as follows: 
the first term is minimised when the synaptic weights down each dendrite are identical 
to the input patterns ( a  similar energy term has been discussed in [7,8]); the second 
‘competition’ term causes each dendrite to learn a different pattern; finally the last 
term prevents the inverse of each pattern being learned. The inhibition A P * 4  is thought 
to be a function of the distance between dendrites p and q. In the later parts of this 
paper we will make the simplifying assumption that the inhibition is constant (i.e. 
A p s 4  = A ) .  I will assume that the dendrites inhibit themselves-an unnecessary but 
convenient assumption. Provided A e 1 this assumption is of little consequence. The 
equilibrium behaviour of this model can be calculated exactly when the number of 
axons becomes very large. Before solving this model we will describe an  actual model 
whose dynamics gives rise to exactly this Hamiltonian. 

2. The model 

We consider a network with the architecture described above which is presented with 
a series of input patterns. A single input pattern will cause a postsynaptic potential 
on a dendrite p which is assumed to be the sum over all axons of the presynaptic 
potentials (f multiplied by the synaptic weights c r  

In a more realistic model a masking term could be introduced to take account of 
missing synapses-for simplicity we will assume the network to be fully connected. 
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The cell bodies are connected to each other through a set of interneurons which 
moderate the cell firing. The stable cell firing rate is assumed to depend on three 
pieces: a linear function of the postsynaptic potential at the cell body; an inhibition 
term proportional to the postsynaptic potential of cell bodies in its vicinity; and a 
threshold (or spontaneous firing rate) term assumed to be the same for each body 

The synapse between axon i and dendrite p experiences a (linear) ‘Hebbian field’ 
h?’’ proportional to the presynaptic potential and the firing rate of the postsynaptic cell 

hT* = <? SP.’. (4) 

Each synapse is assumed to integrate the Hebbian fields of all the input patterns: thus 
after receiving all the patterns each synapse holds in short term memory the ‘total 
Hebbian field’ 

”P 
h F P .  

’’=I  

Only after receiving all the input a synapse 
probability 

I 
1 +exp(-phf[c]Pf)‘ 

p ( q  = *1) = 

Where the total Hebbian field hy[c] depends on 

( 5 )  

will update itself from cy+ E? with 

( 6 )  

the old synaptic weights. 
The set of patterns is repeatedly presented, and a synapse is updated each time. 

After sufficiently many presentations the distribution of synaptic weight values will 
relax into the Gibb’s distribution 

where R [ c ]  is the Hamiltonian given in equation (1). 
This model suffers from many deficiencies as a realistic or useful competitive 

network, which arise mainly from the requirement that the Hamiltonian have a quadratic 
form. Most importantly the synapses must integrate the Hebbian fields for each pattern 
before deciding whether to update. In a more biologically plausible model the synaptic 
weights would be continuous valued and update by a small amount after each pattern 
is presented. Since we have used discrete-valued synapses this is not possible in our 
model. If we naively use continuous synapses we no longer have a sufficient amount 
of non-linearity in the system to learn interesting mappings. (In real systems this 
non-linearity would enter through the sigmoid firing responses of the neurons). 

I t  is hoped that our model approximates the most important feature of a real (or 
useful) competitive network. Some encouragement that at least some of the differences 
between these models do not effect the long term dynamics comes from the apparent 
closeness between the energy function of equation ( 1 )  and the Hopfield function. (The 
Hopfield model describes the dynamics of the firing rates of the neurons; the synapses 
are treated as the quenched variables. Nevertheless our Hamiltonian is formally 
identical to the Hopfield Hamiltonian when there is no mutual inhibition between the 
neurons.) The long-time behaviour of the Hopfield model is known to be very similar 
to that of the Little model which differs from the Hopfield model in that it undergoes 
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parallel updating as opposed to serial updating. It is hoped that the long-term behaviour 
in our model is similarly close to a model which updates in parallel. Indeed, simulations 
of our model with parallel updating appears to show long-time behaviour similar to 
serially updated simulations, although their detailed behaviour, of course, differs. 

Another question is: what is the effect of allowing the presynaptic potentials only 
Ising values? There is some evidence from the Hopfield model that at least some of 
the important features are common to models with continuous and discrete variables 
(see, for example, the effects of clipping described in [9]). However it should also be 
noted that the energy surface is much more stable to overloading when the quenched 
variables are chosen from some continuous distributions (see [lo]). 

3. Mean-field theory 

The equilibrium states for the Hamiltonian of equation (1) can be found in the 
thermodynamic limit ( N ,  + 00) using mean-field theory. We consider the simpler case 
of a finite number of input patterns. This calculation closely resembles that of,[10] 
for the Hopfield model although the meanings of the two models are very different. 
In our model the input patterns are treated as quenched variables while the synaptic 
weights are the annealed variables. 

The partition function is given by 

z(P) = 7 exp(-PWcI) (8 )  

where 2 is the energy function of equation (1). To perform the trace we first decouple 
the synaptic weights by introducing a magnetisation mP3” for each pattern and each 
dendrite. The partition function becomes 

C) 

( mqsP Tp4  + J p 6 p q ) [ p  ( 9 )  

where C is a constant term which does not contribute to the free energy in the 
thermodynamic limit and 

(10) TP.4 = 8 P . q  - A P - 4  

The free energy per synapse averaged over all possible sets of input patterns is 

where ((. . .)) signifies the ensemble average over the quenched variables [ Y .  In the 
limit of an infinite number of patterns the fluctuations in the log-cosh term can be 
neglected (since they are of order 1Im) and thus this term can be replaced by its 
average value, i.e. the free energy and magnetisation self-average. The free energy is 
therefore found from the saddle point evaluation of equation (9) 
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where 6" is the presynaptic potential of a typical axon and  the magnetisations satisfy 
the stationary point condition 

It is straightforward to show that the magnetisations are equal to 

where (. . .) denotes the ensemble average over the annealed variables C P .  The magneti- 
sation mP+ thus measures how closely the synaptic weights on a dendrite p correspond 
to a particular input pattern 5". In the rest of this paper we will for simplicity consider 
isotropic systems where A p 3 q  = A. 

4. Zero temperature 

At zero temperature ( p  + CO) the free energy becomes 

where Mw is the total magnetisation of the dendrites for a given input pattern: 
N ,  

M'" = mP,w 
p = l  

and the magnetisation mP+ satisfies 

The equilibrium solutions of this model correspond to the minima of the energy surface 
of equation (15). 

To illustrate the meaning of these two field equations we examine systems with a 
very small number of input patterns and dendrites. In these systems all the solutions 
can be found. The simplest non-trivial case we can examine is when we have two 
input patterns and two dendrites. There are only eight possible values for the magnetisa- 
tions for each dendrite (mP = (mP3',  mP,*)) which are (*I,  0), (0, il), and (it, *$), 
although some combinations of these magnetisations will only be solutions for specific 
values of the inhibition A and  the threshold J. The two possible 'grandmother cell' 
solutions (m' = ( l , O ) ,  m2 = (0, 1) and vice versa) will be solutions to these equations 
provided 1 - 2A + 2 J  > 0; this inequality comes from ensuring equation (17)  is con- 
sistent. The energy for this solution is found, from a straightforward substitution of 
the magnetisation into equation (151, to be 

(18) 

By calculating the energies of all the other possible solutions one  can determine 
which are the ground states of the system. The grandmother cell solutions will be the 
ground states of this system when A > 0 and  J > A/2. If the inhibition A is negative 
then the ground state consists of the two dendrites learning the same input. I f  J < A/2 

E =-'+'A - J  
2 2  . 
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then one dendrite learns one of the patterns, 4’ say, while the other dendrite learns 
its inverse -6’ (learning the inverse pattern is a peculiarity of subtractive inhibition). 
The mixture states m p  = (*$, *f) are always local maxima. 

In the case when there are three patterns and three dendrites the mixture states 
m p  = (f, f, f )  will be local minima of the system. Indeed this mixture state will be the 
ground state when 35 - 5 A  > 0 and A > 0. The grandmother cell solutions (m’ = (1, 0, 0), 
m2 = (0, 1, 0), m3 = (0, 0 , l )  and the five other permutations) will be local minima 
provided 1 - 3A + 5 J  > 0. They will be the ground-state solutions when 4 J  - 5 A  < 0 and 
5 J  - 2A < 0. When this second constraint is not satisfied the ground state will consist 
of one dendrite learning one pattern and a second the inverse pattern while the third 
dendrite can learn any of the three patterns. 

We must also consider the case when the number of patterns differs from the 
number of dendrites. The easier case occurs when we underload the net. For example 
when we have two patterns and four dendrites then the state equivalent to the 
grandmother cell solutions are m’ = (1, 0), m2 = (1, 0), m3 = ( 0 , l )  and m4 = (0, 1) and 
its various possible permutations. These solutions will be the ground state of the 
system when A > 0 and 23 - 3A > 0. When 2 J  -3A < 0 one of the dendrites will learn 
the inverse of a pattern until 25 - A  < 0 when the system will learn two patterns and 
two inverse patterns. 

Of more interest is when the network is overloaded and particularly when some 
of the patterns are correlated. To examine this we consider a network with two dendrites 
being presented with four patterns; the patterns form two classes where the correlation 
within each class is c and between members of different classes is zero (we assume 
patterns 1 and 2 are correlated and likewise patterns 3 and 4). In this case there are 
two types of solutions of interest: the ‘feature detector’ solution, for example m’ = 
(1, c, 0,O) and m 2 =  (O,O, 1, c) ,  where each dendrite learns one of the four possible 
patterns; and the ‘categoriser’ solution, for example m’ = f ( l +  c)(2,2, 1, 1) and m2 = 
f (  1 + c)( 1, 1 ,2 ,2)  where each dendrite learns only to differentiate between patterns of 
different classes. The conditions under which these solutions exist and are ground 
states are more complicated than before, especially as the inequalities now contain 
three variables. In essence, the feature detector solution will be the ground state only 
for small correlations and when J/A is small, although for very small J-to-A ratio the 
inverse pattern will be learned. The categoriser solution will be the lowest energy state 
when J/A is large although for very large J-to-A ratio the fully symmetric solution 
(each dendrite firing equal to each input pattern) will be the global minimum. 

Although we have determined the ground states, what is more interesting is the 
size of the basin of attraction-it is this that gives the probability of learning a particular 
state (assuming that the initial synaptic weights are random and the patterns are applied 
equally often). We believe that the size of the basins of attraction are related to the 
depths of the energy wells. This is believed to be the case for the Hopfield model and 
agrees qualitatively with simulations on this model. 

5. Simulations 

We have carried out simulations for various different sets of input patterns. The 
simulations agree with the behaviour of the model described above. Finite-size effects 
enter most transparently by causing a small correlation between patterns and a slight 
bias of each pattern-these can be avoided if the number of patterns is small by using 
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specially constructed input patterns which have no bias and  are exactly orthogonal. 
However, provided the inhibition and  threshold constants are sufficiently large and  
the number of patterns sufficiently small these finite-size effects d o  not significantly 
alter the behaviour of the system from that predicted by the theory. 

The graphs in figure 2 illustrate the typical behaviour of this model when random 
patterns are presented. In  this example four random patterns are applied to a network 
consisting of four dendrites and 2048 axons with A = 0.05, J = 0.05 and /3 = 4.00. The 
magnetisation in this case is just 

One cycle corresponds to all the synapses being updated. Notice that each dendrite 
'learns' a different pattern (i.e. grandmother cell encodes), in this case the system has 
found one of the global minima. The speed of learning depends on the initial state 
of the system although typically these simulations are observed to settle down within 
5 to 30 cycles. 

-0.5 J J 

Cyc le  t lme  
- 0  5 J Cycle time 1 
Figure 2. Typical simulation of a competitiLe network with four dendrites and  four random 
patterns. Each dendrite is represented bq a different graph.  

Figure 3 shows a graph of the magnetisations for one of sixteen dendrites receiving 
sixteen patterns again with 2048 axons and A = 0.05, J = 0.05 and /3 = 4.0. In this case 
the system learnt thirteen patterns only (three patterns being learnt by two dendrites). 
This may be a local minimum which the system is trapped in or may possibly be the 
global minimum for this set of patterns-this would then be a finite-size effect caused 
by the small biases and  slight correlations between the patterns which is sufficient to 
alter the energy surface so that the grandmother cell solutions are not the global minima. 

We can also simulate the behaviour of this model with correlated input patterns. 
Figure 4 shows the magnetisation for two systems both with 2048 axons and  three 
dendrites and both experiencing nine patterns which form three classes of three 
correlated patterns each. For small correlations the system can be made to work as a 



2054 A Bennett 

l ' O  1 7 

- 0 . 2 J  Cycle time 

Figure 3. Simulation of a competitive network with sixteen input patterns and sixteen 
dendrites. The graph shows the magnetisations on just one dendrite. 
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Figure 4. Two simulations of networks with three dendrites and three classes of three 
correlated patterns: ( a  1 the interclass correlations are all around &, A = 0.02, J = 0.01 and 
p = 4.0; ( b )  the interclass correlations are all around f, A = 0.05, I = 0.02 and p = 4.0. 
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‘feature detector’-each dendrite learns just one pattern but will of course have an 
overlap with the patterns in the same class. This case is shown in the top  graph where 
the average correlation between members of the same class is 0.1 and  A =0.02 and 
J = 0.01. If the interclass correlation is larger then the ‘feature detector’ will only be  
the ground-state solution for very small values of A and J, but in the size of system 
simulated the biases that arise as finite-size effects are sufficiently large to upset this 
solution. A much easier solution to obtain is the ‘categoriser’ solution in which each 
dendrite learns a mixture state of all three pattern in a class. The graph in figure 4(6) 
shows an  example of this solution; in this case the average correlation within a class 
is 0.2, A = 0.05, J = 0.02 and  again p = 4.0. Both the solutions shown compete with 
the completely mixed state (all dendrites responding equally to every input pattern) 
which will be the ground state for large J-to-A ratios. For small J-to-A ratios dendrites 
will tend to learn the inverse of patterns as well as the patterns themselves. 

Parallel updating gives similar graphs to those shown. Increasing the temperature 
has the effect of removing some of the spurious states but also slows down learning. 
Above a certain temperature ( p  less than about 2.5) a ‘pseudo-paramagnetic’ phase is 
found; this is a finite-size effect, since no real paramagnetic phase exists for J f 0. 

6 .  Discussion 

The Hamiltonian of equation (1) is reminiscent of the Hopfield Hamiltonian: it is 
perhaps appropriate to stress some of the differences. Competitive networks can 
function as feature detectors (e.g. when they have grandmother cells) or as categorisers. 
They respond immediately to an input stimulus. The dynamics of interest for these 
networks are those of the synapses. The Hopfield energy describes the dynamics of 
the neuron firing rates for an  auto-associative memory. The synaptic weights are the 
quenched rather than the annealed variables. The Hopfield network undergoes several 
iterations before it reaches a useful state. Learning mechanisms are not treated in the 
classical Hopfield model. 

Although there are many more realistic models of competitive networks (see the 
list of references in the introduction) little is known about their large-scale behaviour. 
If, as in our model, the number of equilibrium states for the synapse grows exponentially 
with the size of the system then different behaviour might arise in large systems. It is 
hoped that this model will provide a new means for tackling these problems. When 
the number of patterns scales as the number of axons we can no longer ignore the 
correlations between the patterns. In  this case the replica symmetry trick (see [ l l])  
should be employed to solve this model (work in progress). From the close analogy 
with the Hopfield model we can speculate on some of the properties of large systems. 
(Note that when there is no inhibition the energy function is identical in  form to the 
Hopfield energy function). In  particular we would expect that there will be an  upper 
capacity for these networks when learning random patterns (analogous to a,N for the 
Hopfield model) above which the magnetisations are no longer close to one (i.e. 
grandmother-like solutions will not be found). It may also be possible to use the 
natural tendencies of the spin-glass phase to have an  ultrametric structure of solutions 
to increase the capacity and allow for an  effective coding of correlated input patterns 
(see [12]). 

In  understanding networks within the brain many questions must be answered. 
The importance of sparse and  highly correlated inputs as well as low synaptic contact 
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probabilities must be examined. The influence of noise must also be studied. Another 
area that has been studied in simulations by other authors is the effect of having local 
inhibition (or ‘clusters’). In  most of this paper we have been looking at grandmother 
cell solutions but in the brain ensemble encoding is used (in which case we may not 
want the grandmother cell solutions at all), and this poses a further problem in our 
understanding of how competitive networks operate. Finally we must determine if 
this model does indeed resemble the long-term behaviour of real competitive networks. 
In  real competitive networks the competition is achieved by a combination of the 
non-linear firing of neurons followed by a moderation of the firing across all the 
neurons caused by the inhibitory interneurons. The behaviour of this sort of net will 
be somewhat different; for example the inverse patterns will not be learnt. How many 
of these differences are crucial to the long-term behaviour has still to be determined. 

We hope that this model will provide a new stimulus into acquiring a rigorous 
understanding of this important class of neural networks. 
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